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Fig. 7. Electric field distribution near electrodes.

resistance connected between the electrodes [5]. Since the

dimensions of the electrodes can be made extremely small by

microelectronics techniques, the modulation bandwidth A~ can

be large and the required modulation power P can be small.

Therefore, effective modulators with a low value of P/A f can be

expected for a thin optical beam.

When the uniform electrooptic effects in the cross section of a

passing optical beam are required, however, the electrode spacing

has to be increased. As a result, the increase of P/Af is inevitable.

VI. TRAVELING-WAVE STRUCTURES

When the modulation frequency is high so that the wavelength

becomes comparable to the electrode length, the modulator can

be treated as a transmission line. The two important quantities

of traveling-wave modulators are the modulation wave velocity

v and the characteristic impedance Z. These are, within the TEM

wave approximation, obtained from the preceding capacitance

and the formulas [7]

(19)

z=voJk (20)

where tro is the velocity of light in vacuum, C is the capacitance

per unit length of the transmission line, and the CO is the capaci-

tance per unit length for the same transmission line conductors

in vacuum. The velocity of modulation waves is designed to

match that of light in the crystal for the traveling-wave modula-

tion.

If the two matching conditions on the velocity and impedance

[1] are satisfied by selecting the dimensions of the modulator, the

coplanar electrode modulator with a very narrow gap is expected

to be of high efficiency and broad bandwidth.
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Central Metal Post in Stripline Circulators

ALI M. HUSSEIN, STUDENT MEMBER, IEEE,
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SAAD E. YOUSSEF

Abstruct—A central metal post of a suitable radius increases the
bandwidth of a 3-port stripline circrdator considerably. It helps to

realize a compact circulator and gives more flexibility in the design.

INTRODUCTION

The insertion of a central metal post was considered in the

design of broad-band 3-port waveguide circulators [1]- [4].

In the case of stripline circulators, the efforts were mainly con-

centrated to obtain broader bandwidth using external matching

elements [5 ]– [9 ].

We prove here that the insertion of a central metal post, in

the case of 3-port stripline circulators, can increase up to three

times the bandwidth of the simple junction. The radius of the

ferrite disk can be reduced. Generally, a central metal post gives

more flexibility in the design.

FIELD ANALYSIS AND COMPUTATIONAL RESULTS

Consider a metal post of radius a placed at the center of a

ferrite disk of radius R. The z component of the electric field
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Fig. 1. The dependence of (a) the normalized radius x and (b) the im-
pedance ratio Z~/Z= on k/fl for different metal post radii (<z/l/ = O, 0.1,
0.2). ~ = 18°.
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2. The relative bandwidth versus k/p for different metal post
(a/R = 0,0.1, 0.2). * = 18°.

radii

and the azimuthal component of the magnetic field within the

ferrite disk [10] can be put in the form

(1)

H@(r, 4) = jye ~ an [Tn’(etr) – (k/p) rzTn(ar)/ar ]ejn@ (2)
n.—m

where

T.(w) = Jfl(ar) + lnYn(ar) (3)

Tn’(ar) = Jn’(ar) + l. Y.’(ar) (4)

a = CO(eoepop,)ljz (5)

ye = I/ze = (&o&/po#e)l/2 (6)

#e = (,U2 – k2)/p. (7)

k and ,u are the diagonal and off-diagonal components of the

tensor permeability of the ferrite. The z component of the electric

field must vanish at the metal–ferrite interface; therefore,

In = – .ln(aa)/Yn(aa). (8)

Let

x = aR, (9)

Substituting T.(x) and Tti’(x) in place of J.(x) and J“’(x), re-

spectively, into the expressions of K, L, and M [11 ], leads to the

modified circulation conditions for the metal post case.

Using up to the ninth space harmonic, the circulator param-

eters (x, k/~, and Z~/Z=)l are computed for ~ = zz/10.2 Fig. 1

shows the dependence of the normalized radius x and the im-

pedance ratio Z~/Z, on k/p for different values of a/R. Varying

the metal post size, the normalized radius and impedance ratio

curves change considerably. This gives more flexibility in the

design.

The relative bandwidth is defined as the ratio of the band

over which the isolation at port 3 is higher than 20 dBs to the

central circulation frequency. The relative bandwidth is com-

puted and plotted in Fig. 2 as a function of k/p for different

sizes of the metal post [the variations of x and Z~/Z= with k/g

and a/R (Fig. 1) are taken into consideration]. For the simple

junction (a/R = O), the increase in the anisotropic splitting k/,u

results in an increase in the relative bandwidth [12]. However,

for higher values of k/~ the higher order modes affect the circu-

lation action. This leads to a decrease in the bandwidth [13],

Hence the value of k/p cannot be chosen very high (for a/R = O).

Fig. 2 shows that the insertion of a central metal post permits

the use of large anisotropic splitting as was suggested by Bosma

[13 ]. Therefore, the maximum bandwidth for the simple junction

(5.4 percent for k/~1 = 0.22, a/R = O, and $ = 18°) can be

increased using a suitable central metal post.

The dependence of the maximum bandwidth (the peaks of

Fig. 2) and the correspondirig values of k/,u on a/R are shown in

Fig. 3(a). As a/R increases, the maximum bandwidth and. k/~

show a sharp increase followed by a slow decay, The optimum

bandwidth (16 percent) occurs at a/R = 4 percent. This optimum

value is nearly three times larger than that of the simple junction

case. It is worth noting that the optimum bandwidth will be

practically higher than 16 percent due to the losses in the ferrite,

which is not considered here [11], [12]. A further increase in the

bandwidth can be obtained using external matching elements

[5]- [9] and/or by the optimum choice of the stripline coupling

angle [14], [15].

The values of x and Z~/Ze corresponding to the maximum

bandwidth may be deduced for a/R = 0,0.1,0.2 (Figs. 1, 2). The

complete dependence of these parameters on a/R is shown directly

in Fig. 3(b). A sharp decrease in the normalized radius x is

noticed for a/R = 4 percent. Thus a compact broad-band strip-

line circulator can be realized using a 4-percent central metal

post (@ = 180). Fig. 3 can be used for design purposes.

CONCLUSIONS

The circulator parameters (the normalized radius x, the rati~

k/p, and the impedance ratio Z~/ZC) can be conveniently control-

led by the size of the metal post. This provides more flexibility

in the design.

i Z~ is the wave impedance of the dielectric filling the striplines [11].
20 is half the stripline coupling angle.
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Fig. 3. The dependence of the maximum bandwidth and the correspond-
ing values of k/,a, x, and Z~/Ze on the relative size of the metal post.
* = 18.0. (a) The maximum bandwidth and the ratio k/,a. (b) The
normahzed radnrs x and the Impedance ratio ZJ/Ze.

A compact broad-band stripline circulator can be realized

using a 4-percent central metal post for X = 18“.
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Full-Band Low-Loss Continuous Tracking Circulation

in KBand

J. G. de KONING, MEMBER, IEEE,
R. J. HAMILTON, JR., MEMBER, IEEE, ANO

T. L. HIERL

Abstract—The continuous tracking principle is applied to the design of

a wide-band Y-junction striplbte circulator for the 18-26.5-GHz fre-
quency band. Near octave low-loss and high isolation performance is

demonstrated without the need for repeated design cycles. Design data
and construction details are presented.

I. INTRODUCTION

In a recent paper [1], Wu and Rosenbaum discovered the

continuous tracking technique for the design of octave band-

width stripline and microstrip Y-junction circulators. By re-

taining terms up to the third order in the expressions for the

electromagnetic fields, they obtained solutions for the perfect

circulation roots and the intrinsic junction impedance ratio. This

impedahce ratio (Z,ff/Z~) was found to be a nonmonotonic

function of the anisotropic splitting ratio k/~. It was further

shown that by judicious choice of disk coupling half-angle, the

intrinsic and external junction impedance ratios could be matched

over the range 0.5 < k/p < 1.0, thereby obtaining perfect

circulation over a two-to-one frequency range. This continuous

tracking technique was verified with a microstrip design. Moder-

ately high isolation was found from 6.5 to 13 GHz, but the

junction loss of approximately 1 dB was relatively high for a

Y-junction circulator.

This short paper describes the application of the continuous

tracking principle to the design of a wide-band stripline Y-

junction circulator for the 18.O–26.5-GHZ frequency band. High

isolation as well as low loss have been obtained over the desired

frequency range without the need for repeated design cycles. This

indicates a high degree of both usefulness of the design principle

and accuracy of the design procedure.

II. WIDE-BAND CIRCULATOR DESIGN PROCEDURE

Since the circulator described in this short paper is applied

in the design of a low-noise Gunn-effect reflection amplifier,

high isolation with minimum loss is required [2]. It was there-

fore decided, also in view of the high frequency of operation, to

utilize balanced stripline construction. As a preliminary to the

determination of the value of the coupling half-angle ‘Y, which

yields a matched impedance ratio over the widest possible fre-

quency range, the following initial assumptions and material

choices were made.

1) Assume a disk structure, implying

Hi = H. – 47rIvf.

where Hi is the internal magnetic field, Ha is the applied magnetic

field, and 4rrlvf~ is the saturation magnetization of the ferrite.

2) Set Hi = O; therefore,

rem/m= kjp
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